

HEA-003-1173005 Seat No. ____

M. Sc. (Statistics) (Sem. III) (CBCS) Examination November / December - 2017

MS-305 : Applied Electronics

Faculty Code: 003

Subject Code: 1173005					
Time	e : 2	$\frac{1}{2}$ Hours] [Total Marks:	70		
Inst	ruct	ions: (1) Attempt all questions. (2) Each question carries equal marks.			
1	Ansv	wer the following: (any seven)	14		
	(1)	Define Multicollinearity.			
	(2)	Define Econometrics.			
	(3)	If the assumption of CLRM, the disturbances are uncorrected is violated then problem of arises.			
	(4)	In classical linear regression model, the disturbance $\boldsymbol{u}_i \sim \underline{\hspace{1cm}}$			
	(5)	In testing the overall significance of regression coefficients, if the value of \mathbb{R}^2 is then value of F-statistic is ipso facto.			
	(6)	Define pooled data.			
	(7)	The relation between F and \mathbb{R}^2 is			
	(8)	In Ordinal Least Square estimation $Var\text{-}Cov(\hat{\beta})$ is			
	(9)	If d is very close to, the greater the evidence of negative autocorrelation.			
	(10)	State the relation between tolerance and VIF.			

	(a)	Explain heteroscedasticity in classical linear regression model.	
	(b)	Show that ridge estimator is bias estimator of β .	
	(c)	Discuss the Runs test in detection of autocorrelation.	
3	Ans	wer the following:	14
	(a)	Explain Generalized least square method in CLRM.	
	(b)	Explain ordinary least square estimation in classical linear regression model.	
		OR	
3	Ans	wer the following:	14
	(a)	Discuss the classical linear Regression Model.	
	(b)	Discuss prediction using multiple regressions.	
4	Ans	wer the following: (any two)	14
	(a)	Explain the Durbin-Watson d-test in autocorrelation.	
	(b)	Discuss sources of multicollinearity.	
	(c)	Explain OLS estimation in presence of heteroscedasticity.	
5	Ans	wer the following: (any two)	14
	(a)	Explain Goldfeld-Quandt test in detection of heteroscedasticity.	
	(b)	Show that $\hat{\beta}^{gls}$ is unbiased estimator of β . Find its variance.	
	(c)	Discuss types of multicollinearity and give its diagrammatical view.	
	(d)	Explain the terms Tolerance and Variance inflection factor in multicollinearity.	

2

Answer the following: (any two)

14